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Part I

Least Squares: Some Finite-Sample Results
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Univariate Regression Model with Fixed Regressors

Consider the simple regression model

yi = βxi + εi (1)

where εi (i = 1, 2, ...n) are i.i.d. and of mean zero and with finite variance.

The usual textbook assumption is that xi is a fixed deterministic regressor
independent of all values of εi .

What does a fixed regressor actually mean? It means that we are to think of
xi not as an outcome of a random process but merely as a fixed set of
numbers.

The OLS estimator is

β̂ =

∑n
i=1 xiyi∑n
i=1 x2

i

=

∑n
i=1 xi (βxi + εi )∑n

i=1 x2
i

= β +

∑n
i=1 xiεi∑n
i=1 x2

i

(2)

We can show that this is unbiased because we can treat the xi values as
fixed constants, so

E β̂ = β +
n∑

i=1

(
xi∑n

i=1 x2
i

)
E εi = β (3)
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Multivariate Regression Model with Fixed Regressors

This result generalises to the multivariate model with k regressors:

Y = Xβ + ε (4)

where Y and ε are n × 1 vectors, with ε containing i.i.d. errors with finite
variance, X is an n × k matrix and β is a k × 1 vector of coefficients.

We can show that the OLS estimators are unbiased as follows

E β̂ = E
(
(X ′X )

−1
X ′Y

)
(5)

= E
(
(X ′X )

−1
X ′ (Xβ + ε)

)
(6)

= E
(
β + (X ′X )

−1
X ′ε
)

(7)

= β + (X ′X )
−1

X ′ E ε (8)

= β (9)
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Fixed Regressors and Normal Errors

Suppose the i.i.d. error term ε is normally distributed, ε ∼ N
(
0, σ2In

)
.

The formula
β̂ = β + (X ′X )

−1
X ′ε (10)

tells us that, when we treat the X as a fixed set of numbers, the OLS
estimator is a linear function of a normal variable. So β̂ is also normally
distributed.

We calculate the covariance of the coefficient estimates as

E
((

β̂ − β
)(

β̂ − β
)′)

= E
[
(X ′X )

−1
X ′εε′X (X ′X )

−1
]

(11)

= σ2
[
(X ′X )

−1
X ′X (X ′X )

−1
]

(12)

= σ2 (X ′X )
−1

(13)

So β̂ ∼ N
(
β, σ2 (X ′X )−1

)
.
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Stochastic Regressors Model

In reality, the data in the X matrix should usually be thought of as outcomes
of random variables, just like the Y variable.

As long as the X variables are independent of all values in the ε matrix, then
one can proceed in the same way as though the regressors are fixed.

For example, one can demonstrate unbiasedness as

E β̂ = E
(
β + (X ′X )

−1
X ′ε
)

(14)

= β + E
(
(X ′X )

−1
X ′
)

E ε (15)

= β (16)

If the errors are normal, then given the realised value of X one can say

β̂|X ∼ N
(
β, σ2 (X ′X )

−1
)

(17)

This means that, for each possible X , the distribution of β takes on a
particular normal value, so the usual t and F statistics also work. (That
said, the unconditional distribution of β depends upon the distribution of X
and generally will not be Gaussian.)
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More on the Independence Assumption

One might be tempted to think that in the model

yi = βxi + εi i = 1, 2...n. (18)

that one only needs E (xkεk) = 0 for OLS to be unbiased, i.e. that each error
term only needs to be independent of the values of x that occur for the
same observation.

However, one needs a stronger assumption: xk needs to be independent of
all the εi values for i = 1, 2..., n. From equation (2) we can write

E β̂ = β + E

(
n∑

i=1

(
xi∑n

i=1 x2
i

)
εi

)
(19)

Even if εj is independent of xj , it may not be independent of all of the x
values that make up the sum

∑n
i=1 x2

i . This can induce a correlation

between
(

xi∑n
i=1 x2

i

)
and εi which leads to OLS being biased.

We will see that AR(n) time series regressions are an important example of
this kind of bias.
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Part II

Asymptotic Distributions with Stochastic Regressors

Karl Whelan (UCD) Least Squares Estimators February 15, 2011 8 / 15



A New Way of Looking at OLS Estimators

You know the OLS formula in matrix form β̂ = (X ′X )
−1

X ′Y . There is a
useful way to restate this that allows us to make a clear connection to the
WLLN and the CLT.

Consider the case of a regression with 2 variables and 3 observations. The X
matrix is thus

X =

 x11 x21

x12 x22

x13 x23

 (20)

This means we can write

X ′X =

(
x11 x12 x13

x21 x22 x23

) x11 x21

x12 x22

x13 x23

 (21)

=

(
x2
11 + x2

12 + x2
13 x11x21 + x12x22 + x13x23

x21x11 + x22x12 + x23x13 x2
21 + x2

22 + x2
23

)
(22)
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A New Way of Looking at OLS Estimators

Let x1 be a column vector containing the 2 datapoints on the explantory
variables from the first observation

x1 =

(
x11

x21

)
(23)

Multplying this vector by its transpose, we get

x1x
′
1 =

(
x2
11 x11x21

x21x11 x2
22

)
(24)

Going back and comparing this with equation (22) from the previous slide,
we get the following new way of describing the X ′X matrix

X ′X =
n∑

i=1

xix
′
i (25)
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A New Formula for the OLS Estimator

It follows from the previous slides that we can re-write the matrix formula
for the OLS estimator as

β̂ = (X ′X )
−1

X ′Y =

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiy
′
i

)
(26)

In the same way, we can write

β̂ = β + (X ′X )
−1

X ′ε = β +

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiεi

)
(27)

This formula is useful because it explains how the OLS estimator depends
upon sums of random variables. This allows us to use the Weak Law of
Large Numbers and the Central Limit Theorem to establish the limiting
distribution of the OLS estimator.
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IID Stochastic Regressors

Consider the case in which εi are i.i.d. with zero mean and the x variables
are i.i.d. each period and there exists a matrix Qxx such that(

1

n

n∑
i=1

xix
′
i

)
p→ Qxx (28)

This means that (
1

n

n∑
i=1

xix
′
i

)−1

p→ Q−1
xx (29)

We can also say that E (xiε
′
i ) = 0. We can use the multivariate CLT to show

that
1

n

n∑
i=1

xiεi
d→ N (0,Ω) (30)

where
Ω = E

(
xix

′
i ε

2
i

)
(31)
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Limiting Distribution with IID Stochastic Regressors

The OLS estimator is

β̂ = β +

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiεi

)
(32)

with (
1

n

n∑
i=1

xix
′
i

)−1

p→ Q−1
xx (33)

1

n

n∑
i=1

xiεi
d→ N (0,Ω) (34)

Using the Slutsky’s Theorem results combining convergence in probability
with convergence in distribution, we can say

√
n
(
β̂ − β

)
d→ N

(
0,Q−1

xx ΩQ−1
xx

)
(35)
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Unknown Covariance Matrix

Using the terminology described in the last set of notes, we have shown that

β̂
a∼ N

(
β,

1

n
Q−1

xx ΩQ−1
xx

)
(36)

However, we don’t know the values of the long-run average Qxx or the
covariance matrix Ω. As described in the last notes, though, we can
substitute for these with consistent estimators. WLLN tells(

1

n

n∑
i=1

xix
′
i

)−1

p→ Q−1
xx (37)

1

n

n∑
i=1

xix
′
i ε

2
i

p→ Ω (38)

This means we can substitute sample means for the true population means
and base tests on the asymptotic distribution

β̂
a∼ N

β,

(
n∑

i=1

xix
′
i

)−1( n∑
i=1

xix
′
i ε

2
i

)(
n∑

i=1

xix
′
i

)−1
 (39)
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Non-Identically Distributed Stochastic Regressors

In practise, it’s unlikely that independent xi observations will be identically
distributed. What if the xi ’s are independently but differently distributed?

One can still prove a Central Limit Theorem for this case. The previous CLT
that we proved, for i.i.d. variables, is known as the Lindberg-Levy CLT.
Another useful result is the Lindberg-Feller Central Limit Theorem: If a
sequence of observations {y1, y2, ....., yn} are independently distributed with
mean µ and each with a different finite variance σ2

i then

√
n (ȳn − µ)

d→ N
(
0, σ̄2

)
. (40)

where

σ̄2 = lim
n→∞

σ̄n
2 (41)

σ̄2
n =

1

n

n∑
i=1

σ2
i (42)

As usual, there is a natural multivariate extension of this result in which the
covariance matrix of the limiting distribution is an average of the covariance
matrices of the differently distributed xi s.
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